Tissue paper-derived porous carbon encapsulated transition metal nanoparticles as advanced non-precious catalysts: Carbon-shell influence on the electrocatalytic behaviour

[Display omitted] Porous carbon encapsulated non-precious metal nanocatalysts have recently opened the ways towards the development of high-performance water remediation and energy conversion technologies. Herein, we report a facile, scalable and green synthetic methodology to fabricate porous carbo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2021-01, Vol.581, p.905-918
Hauptverfasser: Ahsan, Md Ariful, Puente Santiago, Alain R., Sanad, Mohamed F, Mark Weller, J., Fernandez-Delgado, Olivia, Barrera, Luis A., Maturano-Rojas, Viridiana, Alvarado-Tenorio, Bonifacio, Chan, Candace K., Noveron, Juan C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Porous carbon encapsulated non-precious metal nanocatalysts have recently opened the ways towards the development of high-performance water remediation and energy conversion technologies. Herein, we report a facile, scalable and green synthetic methodology to fabricate porous carbon encapsulated transition metal nanocatalysts (M@TP: M = Cu, Ni, Fe and Co) using commercial tissue paper. The morphology, crystalline structure, chemical composition and textural properties of the M@TP nanocatalysts were thoroughly characterized. The catalytic activity of the M@TP nanocatalysts was investigated for the degradation of Congo red (CR) via peroxymonosulfate activation. Co@TP-6 was found to be the most active catalyst allowing 97.68% degradation in 30 min with a higher rate constant of 0.109 min−1. The nanocatalysts also displayed a carbon shell thickness-dependent electrocatalytic hydrogen evolution reaction (HER) activity, most likely due to the shielding effect of the carbon layers over the electron transfer (ET) processes at the metal core/carbon interfaces. Remarkably, the Ni@TP-6 electrocatalyst, with the smaller carbon shell thickness, showed the best electrocatalytic performance. They delivered an ultralow onset potential of −30 mV vs RHE, an overpotential of 105 mV at a current density of 10 mA·cm−2 and an excellent electrochemical stability to keep the 92% of the initial current applied after 25000 s, which is comparable with the HER activity of the state-of-the-art Ni-based catalysts.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2020.08.012