Bactericidal and synergistic effects of X-ray irradiation and gallic acid against foodborne pathogens on lettuce
The objectives of this study were to evaluate the bactericidal effects of X-ray irradiation and gallic acid (GA) against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on lettuce leaves and in phosphate-buffered saline (PBS). Inoculated PBS and lettuce were exposed to X...
Gespeichert in:
Veröffentlicht in: | Food microbiology 2020-12, Vol.92, p.103584-103584, Article 103584 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The objectives of this study were to evaluate the bactericidal effects of X-ray irradiation and gallic acid (GA) against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on lettuce leaves and in phosphate-buffered saline (PBS). Inoculated PBS and lettuce were exposed to X-rays (0.05, 0.1, and 0.15; 0.1, 0.2, and 0.3 kGy, respectively), and GA was applied to lettuce leaves as a solution and in PBS at concentrations of 0.5% (w/v). Combined treatment with 0.3 kGy and 0.5% GA reduced E. coli O157:H7, S. Typhimurium, and L. monocytogenes cell counts 5.41, 2.57, and 1.36 log CFU/cm2 on lettuce, respectively. Combined treatment with 0.15 kGy X-ray and 0.5% GA reduced counts for the same species by 6.54, 4.24, and 1.51 log CFU/mL in PBS. The combined treatments exerted a synergistic antibacterial effect against E. coli O157:H7 on lettuce, but not against S. Typhimurium or L. monocytogenes. In PBS, the synergistic effect was confirmed in both E. coli O157:H7 and S. Typhimurium cells. Mechanistic investigations indicated that the synergistic antibacterial effect was associated with intracellular reactive oxygen species (ROS) generation and bacterial cell membrane damage. Additionally, the X-ray and GA combination treatment did not adversely affect the color, total phenol content, and texture of lettuce. These findings demonstrate that treatment with X-ray radiation and GA can enhance the microbiological safety of fresh produce.
•X-ray (X) and gallic acid (GA) combination treatment inactivated foodborne pathogens on the lettuce surface.•X-GA combination treatment exhibited a synergistic antimicrobial effect.•The mechanisms underlying the synergistic bactericidal effect involved cell membrane damage and intracellular ROS generation.•The combination treatment did not adversely affect lettuce quality attributes. |
---|---|
ISSN: | 0740-0020 1095-9998 |
DOI: | 10.1016/j.fm.2020.103584 |