Flexible Ultrathin Single-Crystalline Perovskite Photodetector
Flexible optoelectronic devices attract considerable attention due to their prominent role in creating novel wearable apparatus for bionics, robotics, health care, and so forth. Although bulk single-crystalline perovskite-based materials are well-recognized for the high photoelectric conversion effi...
Gespeichert in:
Veröffentlicht in: | Nano letters 2020-10, Vol.20 (10), p.7144-7151 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Flexible optoelectronic devices attract considerable attention due to their prominent role in creating novel wearable apparatus for bionics, robotics, health care, and so forth. Although bulk single-crystalline perovskite-based materials are well-recognized for the high photoelectric conversion efficiency than the polycrystalline ones, their stiff and brittle nature unfortunately prohibits their application for flexible devices. Here, we introduce ultrathin single-crystalline perovskite film as the active layer and demonstrate a high-performance flexible photodetector with prevailing bending reliability. With a much-reduced thickness of 20 nm, the photodetector made of this ultrathin film can achieve a significantly increased responsivity as 5600A/W, 2 orders of magnitude higher than that of recently reported flexible perovskite photodetectors. The demonstrated 0.2 MHz 3 dB bandwidth further paves the way for high-speed photodetection. Notably, all its optoelectronic characteristics resume after being bent over thousands of times. These results manifest the great potential of single-crystalline perovskite ultrathin films for developing wearable and flexible optoelectronic devices. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.0c02468 |