Bile acid-based dual-functional prodrug nanoparticles for bone regeneration through hydrogen peroxide scavenging and osteogenic differentiation of mesenchymal stem cells

A high level of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) upregulates pro-inflammatory cytokines and inhibits the osteogenic differentiation of mesenchymal stem cells (MSCs), which are key factors in bone regeneration. Ursodeoxycholic acid (UDCA), a hydrophilic bile acid, has an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of controlled release 2020-12, Vol.328, p.596-607
Hauptverfasser: Arai, Yoshie, Park, Hyoeun, Park, Sunghyun, Kim, Dohyun, Baek, Inho, Jeong, Lipjeong, Kim, Byoung Ju, Park, Kwideok, Lee, Dongwon, Lee, Soo-Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A high level of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) upregulates pro-inflammatory cytokines and inhibits the osteogenic differentiation of mesenchymal stem cells (MSCs), which are key factors in bone regeneration. Ursodeoxycholic acid (UDCA), a hydrophilic bile acid, has antioxidant and anti-inflammatory activities and also plays beneficial roles in bone regeneration by stimulating the osteogenic differentiation of MSCs while suppressing their adipogenic differentiation. Despite its remarkable capacity for bone regeneration, multiple injections of UDCA induce adverse side effects such as mechanical stress and contamination in bone defects. To fully exploit the beneficial roles of UDCA, a concept polymeric prodrug was developed based on the hypothesis that removal of overproduced H2O2 will potentiate the osteogenic functions of UDCA. In this work, we report bone regenerative nanoparticles (NPs) formulated from a polymeric prodrug of UDCA (PUDCA) with UDCA incorporated in its backbone through H2O2-responsive peroxalate linkages. The PUDCA NPs displayed potent antioxidant and anti-inflammatory activities in MSCs and induced osteogenic rather than adipogenic differentiation of the MSCs. In rat models of bone defect, the PUDCA NPs exhibited significantly better bone regeneration capacity and anti-inflammatory effects than equivalent amounts of UDCA. We anticipate that PUDCA NPs have tremendous translational potential as bone regenerative agents. [Display omitted]
ISSN:0168-3659
1873-4995
DOI:10.1016/j.jconrel.2020.09.023