Application and reflection of genomic scar assays in evaluating the efficacy of platinum salts and PARP inhibitors in cancer therapy

Defective DNA repair is one of the most important features of tumors. BRCA1/2 participates in homologous recombination repair as a key tumor suppressor gene. BRCA1/2 mutation is an important biomarker for predicting the sensitivity of platinum salts and Poly (ADP-ribose) polymerase (PARP) inhibitors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2020-11, Vol.261, p.118434-118434, Article 118434
Hauptverfasser: Gou, Rui, Dong, Hui, Lin, Bei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Defective DNA repair is one of the most important features of tumors. BRCA1/2 participates in homologous recombination repair as a key tumor suppressor gene. BRCA1/2 mutation is an important biomarker for predicting the sensitivity of platinum salts and Poly (ADP-ribose) polymerase (PARP) inhibitors in breast cancer, ovarian cancer, and other cancers. However, epigenetic modifications and other mutations in homologous recombination repair (HRR) genes can also cause homologous recombination deficiency (HRD). Patients with no BRCA1/2 mutations, but bearing similar molecular phenotypes (BRCAness) can still obtain clinical benefits from treatment with platinum salts or PARP inhibitors. Therefore, an accurate assessment of HRD is essential for the formulation of personalized treatments. However, methods to identify HRD in tumors vary and are controversial. Currently, genomic scar assays have been used in multiple clinical trials to assess patient clinical benefit. This review summarizes the therapeutic effects of platinum salts and PARP inhibitors in breast and ovarian cancer, clarifies the predictive value of genomic scar assays in evaluating the clinical benefit of different patient groups and treatment options, and proposes the limitations and optimization of current HRD scoring methods. Using and optimizing genomic scar assays can help to accurately screen the population with the most benefit, expand the scope of drug application, and make the most suitable clinical decision based on individual differences. [Display omitted]
ISSN:0024-3205
1879-0631
DOI:10.1016/j.lfs.2020.118434