Bioactive hyaluronic acid fragments inhibit lipopolysaccharide- induced inflammatory responses via the Toll-like receptor 4 signaling pathway
The high- and the low-molecular weight hyaluronic acids (HMW-HA and LMW-HA, respectively) showed different biological activities in inflammation. However, the role of LMW-HA in inflammatory response is controversial. In this study, we aimed to investigate the effect of bioactive hyaluronan (B-HA) on...
Gespeichert in:
Veröffentlicht in: | Frontiers of medicine 2021-04, Vol.15 (2), p.292-301 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The high- and the low-molecular weight hyaluronic acids (HMW-HA and LMW-HA, respectively) showed different biological activities in inflammation. However, the role of LMW-HA in inflammatory response is controversial. In this study, we aimed to investigate the effect of bioactive hyaluronan (B-HA) on lipopolysaccharide (LPS)-induced inflammatory responses in human macrophages and mice. B-HA was produced from HA treated with glycosylated recombinant human hyaluronidase PH20. Human THP-1 cells were induced to differentiate into macrophages. THP-1-derived macrophages were treated with B-HA, LPS, or B-HA+LPS. The mRNA expression and the production of inflammatory cytokines were determined using quantitative real-time PCR and enzyme-linked immunosorbent assay. The phosphorylation levels of proteins in the nuclear factor- kB (NF- kB), mitogen-activated protein kinase (MAPK), and IRF-3 signaling pathways were measured using Western blot. The in vivo efficacy of B-HA was assessed in a mouse model of LPS-induced inflammation. Results showed that B-HA inhibited the expression of TNF-α, IL-6, IL-1, and IFN-β, and enhanced the expression of the anti-inflammatory cytokine IL-10 in LPS-induced inflammatory responses in THP-1-derived macrophages and in vivo. B-HA significantly suppressed the phosphorylation of the TLR4 signaling pathway proteins p65, IKKα/β, I kBα, JNK1/2, ERK1/2, p38, and IRF-3. In conclusion, our results demonstrated that the B-HA attenuated the LPS-stimulated inflammatory response by inhibiting the activation of the TLR4 signaling pathway. B-HA could be a potential anti-inflammatory drug in the treatment of inflammatory disease. |
---|---|
ISSN: | 2095-0217 2095-0225 |
DOI: | 10.1007/s11684-020-0806-5 |