Antinociception induced by artemisinin nanocapsule in a model of postoperative pain via spinal TLR4 inhibition
Artemisinin (ART) was initially described for the control of inflammation and pain. However, the mechanisms involved with its antinociceptive effect are still poorly understood. Thus, this present study aimed to investigate the effect of ART in both free and nanocapsulated form on postoperative pain...
Gespeichert in:
Veröffentlicht in: | Inflammopharmacology 2020-12, Vol.28 (6), p.1537-1551 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Artemisinin (ART) was initially described for the control of inflammation and pain. However, the mechanisms involved with its antinociceptive effect are still poorly understood. Thus, this present study aimed to investigate the effect of ART in both free and nanocapsulated form on postoperative pain, as well as the participation of the spinal Toll-like receptor 4 (TLR4) in this process. Postoperative pain was induced using the skin/muscle incision retraction (SMIR) model in male Swiss mice. After 3 and 28 days of SMIR, the animals received an intrathecal injection of free or nanocapsulated ART, and the nociceptive threshold was evaluated by von Frey filament test. To evaluate the involvement of the microglia, astrocytes, and TLR4, minocycline (a microglia inhibitor), fluorocitrate (an astrocyte inhibitor), and
Lipopolysaccharide Rhodobacter sphaeroides
(LPS-RS), a TLR4 antagonist, were intrathecally injected on the third day of SMIR. The levels of spinal TLR4 protein and proinflammatory cytokines tumor necrosis factor-alpha (TNF-α), and interleukin-1-beta (IL-1β) were quantified by western blot and enzyme-linked immunosorbent assay, respectively. The results showed that free ART reduced postoperative pain (
P
|
---|---|
ISSN: | 0925-4692 1568-5608 |
DOI: | 10.1007/s10787-020-00756-w |