One-dimensional organic artificial multi-synapses enabling electronic textile neural network for wearable neuromorphic applications
One-dimensional (1D) devices are becoming the most desirable format for wearable electronic technology because they can be easily woven into electronic (e-) textile(s) with versatile functional units while maintaining their inherent features under mechanical stress. In this study, we designed 1D fib...
Gespeichert in:
Veröffentlicht in: | Science advances 2020-07, Vol.6 (28), Article 1178 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One-dimensional (1D) devices are becoming the most desirable format for wearable electronic technology because they can be easily woven into electronic (e-) textile(s) with versatile functional units while maintaining their inherent features under mechanical stress. In this study, we designed 1D fiber-shaped multi-synapses comprising ferroelectric organic transistors fabricated on a 100-mu m Ag wire and used them as multisynaptic channels in an e-textile neural network for wearable neuromorphic applications. The device mimics diverse synaptic functions with excellent reliability even under 6000 repeated input stimuli and mechanical bending stress. Various NOR-type textile arrays are formed simply by cross-pointing 1D synapses with Ag wires, where each output from individual synapse can be integrated and propagated without undesired leakage. Notably, the 1D multi-synapses achieved up to similar to 90 and similar to 70% recognition accuracy for MNIST and electrocardiogram patterns, respectively, even in a single-layer neural network, and almost maintained regardless of the bending conditions. |
---|---|
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.aba1178 |