Revisiting the Pig IGHC Gene Locus in Different Breeds Uncovers Nine Distinct IGHG Genes

IgG subclass diversification is common in placental mammals. It has been well documented in humans and mice that different IgG subclasses, with diversified functions, synergistically regulate humoral immunity. However, our knowledge on the genomic and functional diversification of IgG subclasses in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2020-10, Vol.205 (8), p.2137-2145
Hauptverfasser: Zhang, Ming, Li, Zhenrong, Li, Jingying, Huang, Tian, Peng, Gaochuang, Tang, Wenda, Yi, Guoqiang, Zhang, Lifan, Song, Yu, Liu, Tianran, Hu, Xiaoxiang, Ren, Liming, Liu, Honglin, Butler, John E, Han, Haitang, Zhao, Yaofeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:IgG subclass diversification is common in placental mammals. It has been well documented in humans and mice that different IgG subclasses, with diversified functions, synergistically regulate humoral immunity. However, our knowledge on the genomic and functional diversification of IgG subclasses in the pig, a mammalian species with high agricultural and biomedical importance, is incomplete. Using bacterial artificial chromosome sequencing and newly assembled genomes generated by the PacBio sequencing approach, we characterized and mapped the IgH C region gene locus in three indigenous Chinese breeds (Erhualian, Xiang, and Luchuan) and compared them to that of Duroc. Our data revealed that IGHG genes in Chinese pigs differ from the Duroc, whereas the IGHM, IGHD, IGHA, and IGHE genes were all single copy and highly conserved in the pig breeds examined. Most striking were differences in numbers of IGHG genes: there are seven genes in Erhualian pigs, six in the Duroc, but only five in Xiang pigs. Phylogenetic analysis suggested that all reported porcine IGHG genes could be classified into nine subclasses: IGHG1, IGHG2a, IGHG2b, IGHG2c, IGHG3, IGHG4, IGHG5a, IGHG5b, and IGHG5c. Using sequence information, we developed a mouse mAb specific for IgG3. This study offers a starting point to investigate the structure-function relationship of IgG subclasses in pigs.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1901483