Using Machine Learning to Generate Novel Hypotheses: Increasing Optimism About COVID-19 Makes People Less Willing to Justify Unethical Behaviors

How can we nudge people to not engage in unethical behaviors, such as hoarding and violating social-distancing guidelines, during the COVID-19 pandemic? Because past research on antecedents of unethical behavior has not provided a clear answer, we turned to machine learning to generate novel hypothe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological science 2020-10, Vol.31 (10), p.1222-1235
Hauptverfasser: Sheetal, Abhishek, Feng, Zhiyu, Savani, Krishna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:How can we nudge people to not engage in unethical behaviors, such as hoarding and violating social-distancing guidelines, during the COVID-19 pandemic? Because past research on antecedents of unethical behavior has not provided a clear answer, we turned to machine learning to generate novel hypotheses. We trained a deep-learning model to predict whether or not World Values Survey respondents perceived unethical behaviors as justifiable, on the basis of their responses to 708 other items. The model identified optimism about the future of humanity as one of the top predictors of unethicality. A preregistered correlational study (N = 218 U.S. residents) conceptually replicated this finding. A preregistered experiment (N = 294 U.S. residents) provided causal support: Participants who read a scenario conveying optimism about the COVID-19 pandemic were less willing to justify hoarding and violating social-distancing guidelines than participants who read a scenario conveying pessimism. The findings suggest that optimism can help reduce unethicality, and they document the utility of machine-learning methods for generating novel hypotheses.
ISSN:0956-7976
1467-9280
DOI:10.1177/0956797620959594