New insights into the immune regulation and tissue repair of Litopenaeus vannamei during temperature fluctuation using TMT-based proteomics
To investigate shrimp immunoregulation and tissue self-repair mechanism during temperature fluctuation stage, Litopenaeus vannamei (L. vannamei) was treated under conditions of gradual cooling from an acclimation temperature (28 °C, C group) to 13 °C (T group) in 2 days with a cooling rate of 7.5 °C...
Gespeichert in:
Veröffentlicht in: | Fish & shellfish immunology 2020-11, Vol.106, p.975-981 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To investigate shrimp immunoregulation and tissue self-repair mechanism during temperature fluctuation stage, Litopenaeus vannamei (L. vannamei) was treated under conditions of gradual cooling from an acclimation temperature (28 °C, C group) to 13 °C (T group) in 2 days with a cooling rate of 7.5 °C/d and then rewarmed to 28 °C (R group) with the same rate. Tandem mass tags (TMT) -based proteomics technology was used to investigate the protein abundance changes of intestine in L. vannamei during temperature fluctuation. The results showed that a total of 5796 proteins with function annotation were identified. Of which, the abundances of 1978 proteins (34%) decreased after cooling and then increased after rewarming, 1498 proteins (26%) increased during the whole stage, 1263 proteins (22%) increased after cooling and then decreased after rewarming and 1057 proteins (18%) decreased during the whole stage. Differentially expressed proteins such as C-lectin, NFκBIA and Caspase may contributed to the regulation of immunity and tissue repair of shrimp intestine during the temperature fluctuation stage. These findings contribute to the better understanding of shrimp’ regulatory mechanism against adverse environment.
[Display omitted]
•The first TMT-based proteomic profiling for shrimp during temperature fluctuation.•Shrimp could cope with cold stress by metabolic inhibition.•Shrimp up-regulated intestinal immune-related proteins to maintain homeostasis during temperature fluctuation. |
---|---|
ISSN: | 1050-4648 1095-9947 |
DOI: | 10.1016/j.fsi.2020.09.014 |