Dual-input convolutional neural network for glaucoma diagnosis using spectral-domain optical coherence tomography
Background/AimsTo evaluate, with spectral-domain optical coherence tomography (SD-OCT), the glaucoma-diagnostic ability of a deep-learning classifier.MethodsA total of 777 Cirrus high-definition SD-OCT image sets of the retinal nerve fibre layer (RNFL) and ganglion cell-inner plexiform layer (GCIPL)...
Gespeichert in:
Veröffentlicht in: | British journal of ophthalmology 2021-11, Vol.105 (11), p.1555-1560 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background/AimsTo evaluate, with spectral-domain optical coherence tomography (SD-OCT), the glaucoma-diagnostic ability of a deep-learning classifier.MethodsA total of 777 Cirrus high-definition SD-OCT image sets of the retinal nerve fibre layer (RNFL) and ganglion cell-inner plexiform layer (GCIPL) of 315 normal subjects, 219 patients with early-stage primary open-angle glaucoma (POAG) and 243 patients with moderate-to-severe-stage POAG were aggregated. The image sets were divided into a training data set (252 normal, 174 early POAG and 195 moderate-to-severe POAG) and a test data set (63 normal, 45 early POAG and 48 moderate-to-severe POAG). The visual geometry group (VGG16)-based dual-input convolutional neural network (DICNN) was adopted for the glaucoma diagnoses. Unlike other networks, the DICNN structure takes two images (both RNFL and GCIPL) as inputs. The glaucoma-diagnostic ability was computed according to both accuracy and area under the receiver operating characteristic curve (AUC).ResultsFor the test data set, DICNN could distinguish between patients with glaucoma and normal subjects accurately (accuracy=92.793%, AUC=0.957 (95% CI 0.943 to 0.966), sensitivity=0.896 (95% CI 0.896 to 0.917), specificity=0.952 (95% CI 0.921 to 0.952)). For distinguishing between patients with early-stage glaucoma and normal subjects, DICNN’s diagnostic ability (accuracy=85.185%, AUC=0.869 (95% CI 0.825 to 0.879), sensitivity=0.921 (95% CI 0.813 to 0.905), specificity=0.756 (95% CI 0.610 to 0.790)]) was higher than convolutional neural network algorithms that trained with RNFL or GCIPL separately.ConclusionThe deep-learning algorithm using SD-OCT can distinguish normal subjects not only from established patients with glaucoma but also from patients with early-stage glaucoma. The deep-learning model with DICNN, as trained by both RNFL and GCIPL thickness map data, showed a high diagnostic ability for discriminatingpatients with early-stage glaucoma from normal subjects. |
---|---|
ISSN: | 0007-1161 1468-2079 |
DOI: | 10.1136/bjophthalmol-2020-316274 |