Interfacial Properties of Chitosan in Interfacial Shear and Capsule Compression
The time-dependent behavior of surface-active adsorption layers at the oil/water interface can dictate emulsion behavior at both the micro- and macroscale. In addition, self-healing behavior of the adsorption layer may benefit emulsion stability subject to large deformation under processing or durin...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-10, Vol.12 (42), p.48084-48092 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The time-dependent behavior of surface-active adsorption layers at the oil/water interface can dictate emulsion behavior at both the micro- and macroscale. In addition, self-healing behavior of the adsorption layer may benefit emulsion stability subject to large deformation under processing or during final application. We explore the behavior of chitosan, a known hydrophilic emulsifier, which forms nanoparticle aggregates when the concentration of acetate buffer exceeds 0.3 M. We observe a Pickering adsorption layer building and strain-dependent behavior of the chitosan at the medium chain triglyceride oil/water interface. We compare this to the behavior of identical chitosan layers coated on oil droplets via atomic force microscopy colloidal probe compression in both linear and oscillatory compressions. In both interfacial shear rheometry and the capsule compression, a thick, elastic layer with strong time-dependent recovery behavior is observed, suggesting that the layer has some self-healing capabilities. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c11781 |