P-cadherin induces anoikis-resistance of matrix-detached breast cancer cells by promoting pentose phosphate pathway and decreasing oxidative stress

Successful metastatic spreading relies on cancer cells with stem-like properties, glycolytic metabolism and increased antioxidant protection, allowing them to escape anoikis and to survive in circulation. The expression of P-cadherin, a poor prognostic factor in breast cancer, is associated with hyp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Molecular basis of disease 2020-12, Vol.1866 (12), p.165964-165964, Article 165964
Hauptverfasser: Sousa, Bárbara, Pereira, Joana, Marques, Ricardo, Grilo, Luís F., Pereira, Susana P., Sardão, Vilma A., Schmitt, Fernando, Oliveira, Paulo J., Paredes, Joana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Successful metastatic spreading relies on cancer cells with stem-like properties, glycolytic metabolism and increased antioxidant protection, allowing them to escape anoikis and to survive in circulation. The expression of P-cadherin, a poor prognostic factor in breast cancer, is associated with hypoxic, glycolytic and acidosis biomarkers. In agreement, P-cadherin-enriched breast cancer cell populations presents a glycolytic and an acid-resistance phenotype. Our aim was to evaluate whether P-cadherin expression controls the glycolytic and oxidative phosphorylation fluxes of matrix-detached breast cancer cells, acting as an antioxidant and enhancing their survival in anchorage-independent conditions. By using matrix-detached breast cancer cells, we concluded that P-cadherin increases glucose-6-phosphate dehydrogenase expression, up-regulating the carbon flux through the pentose phosphate pathway, while inhibiting pyruvate oxidation to acetyl-coA via pyruvate dehydrogenase kinase-4 (PDK-4) activation. Accordingly, P-cadherin expression conferred increased sensitivity to dichloroacetate (DCA), a PDK inhibitor. P-cadherin expression also regulates oxidative stress in matrix-detached breast cancer cells, through the control of antioxidant systems, such as catalase and superoxide dismutases (SOD)1 and 2, providing these cells with an increased resistance to doxorubicin-induced anoikis. Importantly, this association was validated in primary invasive breast carcinomas, where an enrichment of SOD2 was found in P-cadherin-overexpressing breast carcinomas. In conclusion, we propose that P-cadherin up-regulates carbon flux through the pentose phosphate pathway and decreases oxidative stress in matrix-detached breast cancer cells. These metabolic remodeling and antioxidant roles of P-cadherin can promote the survival of breast cancer cells in circulation and in metastatic sites, being a possible player in breast cancer therapeutic resistance to pro-oxidant-based interventions. •P-cadherin up-regulates G6PD expression, increasing the carbon flux through the PPP in matrix-detached breast cancer cells.•P-cadherin regulates the oxidative stress and increases the resistance to doxorubicin of matrix-detached breast cancer cells.•Breast carcinomas with aberrant P-cadherin expression present an enrichment of SOD2.
ISSN:0925-4439
1879-260X
DOI:10.1016/j.bbadis.2020.165964