EpiDope: a deep neural network for linear B-cell epitope prediction

Abstract Motivation By binding to specific structures on antigenic proteins, the so-called epitopes, B-cell antibodies can neutralize pathogens. The identification of B-cell epitopes is of great value for the development of specific serodiagnostic assays and the optimization of medical therapy. Howe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2021-05, Vol.37 (4), p.448-455
Hauptverfasser: Collatz, Maximilian, Mock, Florian, Barth, Emanuel, Hölzer, Martin, Sachse, Konrad, Marz, Manja
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Motivation By binding to specific structures on antigenic proteins, the so-called epitopes, B-cell antibodies can neutralize pathogens. The identification of B-cell epitopes is of great value for the development of specific serodiagnostic assays and the optimization of medical therapy. However, identifying diagnostically or therapeutically relevant epitopes is a challenging task that usually involves extensive laboratory work. In this study, we show that the time, cost and labor-intensive process of epitope detection in the lab can be significantly reduced using in silico prediction. Results Here, we present EpiDope, a python tool which uses a deep neural network to detect linear B-cell epitope regions on individual protein sequences. With an area under the curve between 0.67 ± 0.07 in the receiver operating characteristic curve, EpiDope exceeds all other currently used linear B-cell epitope prediction tools. Our software is shown to reliably predict linear B-cell epitopes of a given protein sequence, thus contributing to a significant reduction of laboratory experiments and costs required for the conventional approach. Availabilityand implementation EpiDope is available on GitHub (http://github.com/mcollatz/EpiDope). Supplementary information Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btaa773