EpiDope: a deep neural network for linear B-cell epitope prediction
Abstract Motivation By binding to specific structures on antigenic proteins, the so-called epitopes, B-cell antibodies can neutralize pathogens. The identification of B-cell epitopes is of great value for the development of specific serodiagnostic assays and the optimization of medical therapy. Howe...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2021-05, Vol.37 (4), p.448-455 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Motivation
By binding to specific structures on antigenic proteins, the so-called epitopes, B-cell antibodies can neutralize pathogens. The identification of B-cell epitopes is of great value for the development of specific serodiagnostic assays and the optimization of medical therapy. However, identifying diagnostically or therapeutically relevant epitopes is a challenging task that usually involves extensive laboratory work. In this study, we show that the time, cost and labor-intensive process of epitope detection in the lab can be significantly reduced using in silico prediction.
Results
Here, we present EpiDope, a python tool which uses a deep neural network to detect linear B-cell epitope regions on individual protein sequences. With an area under the curve between 0.67 ± 0.07 in the receiver operating characteristic curve, EpiDope exceeds all other currently used linear B-cell epitope prediction tools. Our software is shown to reliably predict linear B-cell epitopes of a given protein sequence, thus contributing to a significant reduction of laboratory experiments and costs required for the conventional approach.
Availabilityand implementation
EpiDope is available on GitHub (http://github.com/mcollatz/EpiDope).
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
ISSN: | 1367-4803 1460-2059 1367-4811 |
DOI: | 10.1093/bioinformatics/btaa773 |