Climate warming induced synchronous growth decline in Norway spruce populations across biogeographical gradients since 2000

Covering large parts of Europe, Norway spruce (Picea abies L Karst.) plays an important role in the adaptation strategy of forest services to future climate change. Although dendroecology can provide valuable information on the past relationships between tree growth and climate, most previous studie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2021-01, Vol.752, p.141794-141794, Article 141794
Hauptverfasser: Bosela, Michal, Tumajer, Jan, Cienciala, Emil, Dobor, Laura, Kulla, Ladislav, Marčiš, Peter, Popa, Ionel, Sedmák, Róbert, Sedmáková, Denisa, Sitko, Roman, Šebeň, Vladimír, Štěpánek, Petr, Büntgen, Ulf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Covering large parts of Europe, Norway spruce (Picea abies L Karst.) plays an important role in the adaptation strategy of forest services to future climate change. Although dendroecology can provide valuable information on the past relationships between tree growth and climate, most previous studies were biased towards species-specific distribution limits, where old individuals grow slowly under extreme conditions. In the present study, we investigated the growth variability and climate sensitivity of 2851 Norway spruce trees along longitudinal (E 12–26°), latitudinal (N 45–51°), and elevation (118–1591 m a.s.l.) gradients in central-eastern Europe. We reveal that summer weather significantly affects the radial growth of spruce trees, but the effects strongly vary along biogeographical gradients. Extreme summer heatwaves in 2000 and 2003 reduced the growth rates by 10–35%, most pronounced in the southern Carpathians. In contrast to the population in the Czech Republic, climate warming induced a synchronous decline in the growth rates across biogeographical gradients in the Carpathian arc. By demonstrating the increased vulnerability of Norway spruce under warmer climate conditions, we recommended that the forest services and conservation managers replace or admix monocultures of this species with more drought-resilient mixtures including fir, beech and other broadleaved species. [Display omitted] •Major summer heatwaves synchronized growth reactions across biogeographic gradients.•Populations in southern latitudes and lower elevations are more vulnerable to drought.•Spruce has strongly suffered from climate warming and environmental pollution.•Spruce monospecific forests should be admixed with better-adapted species.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2020.141794