Singular Secondary Bifurcation

A bifurcation problem is analyzed for a Brussellator boundary value problem, which is a typical reaction-diffusion system. The bifurcation parameter λ is proportional to the length of the system. We employ previously developed perturbation methods to analyze the secondary bifurcation of steady solut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on applied mathematics 1984-06, Vol.44 (3), p.463-478
Hauptverfasser: Erneux, Thomas, Reiss, Edward L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bifurcation problem is analyzed for a Brussellator boundary value problem, which is a typical reaction-diffusion system. The bifurcation parameter λ is proportional to the length of the system. We employ previously developed perturbation methods to analyze the secondary bifurcation of steady solutions that arise from the splitting of multiple primary bifurcation points. The resulting bifurcation equations are nonlinear algebraic equations to determine the amplitudes of the solutions. The coefficients in these equations depend upon the system parameters in the Brussellator problem, such as the two prescribed constant reactants A and B. For critical values of these parameters the solutions of the algebraic system are singular, and hence the perturbation method is invalid for parameter values at and near these critical values. A new perturbation method is employed yielding new branches of steady solutions and possible tertiary bifurcations to time-periodic solutions. Thus the analysis of singularities in the bifurcation equations reveals new mechanisms for the occurrence of steady and time-periodic solutions. Some implications of the results for chemical morphogenesis are discussed.
ISSN:0036-1399
1095-712X
DOI:10.1137/0144031