Symmetric interlimb transfer of newly acquired skilled movements
How newly acquired motor skills generalize across effectors is not well understood. Here, we show that newly learned skilled actions transfer symmetrically across the arms and that task-level variability influences learning rate but not transfer magnitude or direction. Interestingly, strategies deve...
Gespeichert in:
Veröffentlicht in: | Journal of neurophysiology 2020-11, Vol.124 (5), p.1364-1376 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | How newly acquired motor skills generalize across effectors is not well understood. Here, we show that newly learned skilled actions transfer symmetrically across the arms and that task-level variability influences learning rate but not transfer magnitude or direction. Interestingly, strategies developed during learning with one arm transfer to the untrained arm. This likely reflects the outcome of learning driven by cognitive mechanisms during the initial stages of motor skill acquisition.
In this study, we aimed to examine features of interlimb generalization or “transfer” of newly acquired motor skills, with a broader goal of better understanding the mechanisms mediating skill learning. Right-handed participants ( n = 36) learned a motor task that required them to make very rapid but accurate reaches to one of eight randomly presented targets, thus bettering the typical speed-accuracy tradeoff. Subjects were divided into an “RL” group that first trained with the right arm and was then tested on the left and an “LR” group that trained with the left arm and was subsequently tested on the right. We found significant interlimb transfer in both groups. Remarkably, we also observed that participants learned faster with their left arm compared with the right. We hypothesized that this could be due to a previously suggested left arm/right hemisphere advantage for movements under variable task conditions. To corroborate this, we recruited two additional groups of participants ( n = 22) that practiced the same task under a single target condition. This removal of task level variability eliminated learning rate differences between the arms, yet interlimb transfer remained robust and symmetric, as in the first experiment. Additionally, the strategy used to reduce errors during learning, albeit heterogeneous across subjects particularly in our second experiment, was adopted by the untrained arm. These findings may be best explained as the outcome of the operation of cognitive strategies during the early stages of motor skill learning.
NEW & NOTEWORTHY How newly acquired motor skills generalize across effectors is not well understood. Here, we show that newly learned skilled actions transfer symmetrically across the arms and that task-level variability influences learning rate but not transfer magnitude or direction. Interestingly, strategies developed during learning with one arm transfer to the untrained arm. This likely reflects the outcome of learning driven by c |
---|---|
ISSN: | 0022-3077 1522-1598 |
DOI: | 10.1152/jn.00777.2019 |