A potential natural solar light active photocatalyst using magnetic ZnFe2O4 @ TiO2/Cu nanocomposite as a high performance and recyclable platform for degradation of naproxen from aqueous solution
In this study, naproxen degradation examined using a photocatalytic method under the sunlight and UV light via ZnFe2O4@TiO2/Cu nanocomposite in the batch, continuous and large scale systems. ZnFe2O4@TiO2/Cu nanocomposite was prepared using Solvothermal method, and structure, morphology, and size of...
Gespeichert in:
Veröffentlicht in: | Journal of cleaner production 2020-09, Vol.268, p.122023, Article 122023 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, naproxen degradation examined using a photocatalytic method under the sunlight and UV light via ZnFe2O4@TiO2/Cu nanocomposite in the batch, continuous and large scale systems. ZnFe2O4@TiO2/Cu nanocomposite was prepared using Solvothermal method, and structure, morphology, and size of the nanoparticles was determined using XRD, VSM, FESEM/EDX, DLS, FTIR, TGA, UV–Vis (DRS), XPS, PL, ESR, Zeta potential and ICP-OES. pH, catalyst concentration, aeration, initial concentration of naproxen, flow rate was investigated on naproxen photodegradation. The results showed that ZnFe2O4@TiO2/Cu nanocomposites exhibited better photocatalytic activity in relation to ZnFe2O4@TiO2 and ZnFe2O4. The ZnFe2O4@TiO2/Cu nanocomposite exhibited naproxen photodegradition efficiency of 80.73% under sunlight. It also revealed high stability and recyclability, where in after 5 cycles of using the catalyst in take, 72.31% removal was achieved. With increasing flow rates i.e. from 5 to 15 ml/min, naproxen degradation decreased. Therefore, it can be safely concluded that ZnFe2O4@TiO2/Cu nanoparticle, due to high efficiency as well as easy separation of nanoparticles from pollutants via a magnet can be used as a practical, reliable, efficient and inexpensive way to remove contaminants from the water resources.
[Display omitted]
•The successful synthesis of TiO2 @ZnFe2O4/Cu ternary photocatalysts by Solvothermal method.•The photocatalytic degradation of NPX were planned under solar irradiation in continues system.•Photocatalytic degradation of NPX was studied in large scale.•Degradation kinetics and mineralization rate of naproxen were investigated. |
---|---|
ISSN: | 0959-6526 1879-1786 |
DOI: | 10.1016/j.jclepro.2020.122023 |