Linking Genes to Shape in Plants Using Morphometrics

A transition from qualitative to quantitative descriptors of morphology has been facilitated through the growing field of morphometrics, representing the conversion of shapes and patterns into numbers. The analysis of plant form at the macromorphological scale using morphometric approaches quantifie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of genetics 2020-11, Vol.54 (1), p.417-437
Hauptverfasser: Xu, Hao, Bassel, George W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A transition from qualitative to quantitative descriptors of morphology has been facilitated through the growing field of morphometrics, representing the conversion of shapes and patterns into numbers. The analysis of plant form at the macromorphological scale using morphometric approaches quantifies what is commonly referred to as a phenotype. Quantitative phenotypic analysis of individuals with contrasting genotypes in turn provides a means to establish links between genes and shapes. The path from a gene to a morphological phenotype is, however, not direct, with instructive information progressing both across multiple scales of biological complexity and through nonintuitive feedback, such as mechanical signals. In this review, we explore morphometric approaches used to perform whole-plant phenotyping and quantitative approaches in capture processes in the mesoscales, which bridge the gaps between genes and shapes in plants. Quantitative frameworks involving both the computational simulation and the discretization of data into networks provide a putative path to predicting emergent shape from underlying genetic programs.
ISSN:0066-4197
1545-2948
DOI:10.1146/annurev-genet-022620-094553