Quantitative and Sensitive SERS Platform with Analyte Enrichment and Filtration Function

Surface-enhanced Raman scattering (SERS) technique with naturally born analyte identification capability can achieve ultrahigh sensitivity. However, the sensitivity and quantification capability of SERS are assumed to be mutually exclusive. Here, we prohibit the formation of the ultrasensitive SERS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2020-10, Vol.20 (10), p.7304-7312
Hauptverfasser: Ding, Qianqian, Wang, Jing, Chen, Xueyan, Liu, Hong, Li, Quanjiang, Wang, Yanling, Yang, Shikuan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface-enhanced Raman scattering (SERS) technique with naturally born analyte identification capability can achieve ultrahigh sensitivity. However, the sensitivity and quantification capability of SERS are assumed to be mutually exclusive. Here, we prohibit the formation of the ultrasensitive SERS sites to achieve a high quantification capability through separating the gold (Au) nanorods from approaching each other with thick metal organic framework (MOF) shells. The sensitivity decrease caused by the absence of the ultrasensitive SERS sites is compensated by the analyte enrichment function of a slippery surface. The porous MOF shell around the Au nanorod only allows analytes smaller than the pore size to approach the Au nanorods and contribute to the SERS spectrum within the complex sample, greatly enhancing the analyte identification capability. Overall, we have demonstrated an integrated SERS platform with analyte enrichment and analyte filtration function, realizing sensitive, quantitative, and size selective analyte identification in complex environments.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.0c02683