A THz transparent 3D printed microfluidic cell for small angle x-ray scattering

Excitation frequencies in the terahertz (THz) range are expected to lead to functionally relevant domain movements within the biological macromolecules such as proteins. The possibility of examining such movements in an aqueous environment is particularly valuable since here proteins are not deprive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2020-08, Vol.91 (8), p.084101-084101
Hauptverfasser: Schewa, S., Schroer, M. A., Zickmantel, T., Song, Y.-H., Blanchet, C. E., Gruzinov, A. Yu, Katona, G., Svergun, D. I., Roessle, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Excitation frequencies in the terahertz (THz) range are expected to lead to functionally relevant domain movements within the biological macromolecules such as proteins. The possibility of examining such movements in an aqueous environment is particularly valuable since here proteins are not deprived of any motional degrees of freedom. Small angle x-ray scattering (SAXS) is a powerful method to study the structure and domain movements of proteins in solution. Here, we present a microfluidic cell for SAXS experiments, which is also transparent for THz radiation. Specifically, cell dimensions and material were optimized for both radiation sources. In addition, the polystyrene cell can be 3D printed and easily assembled. We demonstrate the practicality of our design for SAXS measurements on several proteins in solution.
ISSN:0034-6748
1089-7623
DOI:10.1063/5.0004706