Stable C2N/h-BN van der Waals heterostructure: flexibly tunable electronic and optic properties

Monolayer C2N has been successfully synthesized. To explore the enhancement of its stability and the expansion of its potential applications in electronics and optoelectronics, a vertical van der Waals heterostructure is constructed by C2N monolayer integrated with h-BN monolayer. The first-principl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2020-11, Vol.32 (47)
Hauptverfasser: Yuan, P F, Han, J N, Fan, Z Q, Zhang, Z H, Wang, C Z
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monolayer C2N has been successfully synthesized. To explore the enhancement of its stability and the expansion of its potential applications in electronics and optoelectronics, a vertical van der Waals heterostructure is constructed by C2N monolayer integrated with h-BN monolayer. The first-principles calculations based on the density functional theory show that this structure possesses a type-II band alignment with a smaller direct band gap and lager band offsets, suggesting that photo-generated electron-hole pairs can be well spatially separated, and thus an excellent photoelectric and photovoltaic material can be obtained. Also shown is that the electronic properties of such a heterostructure can be effectively regulated by a vertical strain and external electric field. For example, under compressive strain or forward electric field, its band gap can be significantly reduced to enhance light-excitation electron transition further, meanwhile the feature of direct band-gap and large band offsets is always well-preserved. Furthermore, it is found that the intrinsic heterostructure holds a wide optic adsorption range and large adsorption coefficient, and the applied compressive strain or a positive electric field can lead to a wide and high main absorption peak across the near-infrared, visible light, and ultraviolet region, implying that a tuned heterostructure has more promising applications in optoelectronics.
ISSN:0953-8984
1361-648X
DOI:10.1088/1361-648X/abaf12