Signaling via Histidine-Containing Phosphotransfer Proteins in Arabidopsis

The Arabidopsis genome encodes a number of proteins with similarity to two-component phosphorelay signaling elements, including hybrid receptor histidine kinases, two classes of response regulator proteins (type-A and type-B ARRs) and a family of six histidine-containing phosphotransfer proteins (AH...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant signaling & behavior 2007-07, Vol.2 (4), p.287-289
Hauptverfasser: Hutchison, Claire E., Kieber, Joseph J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Arabidopsis genome encodes a number of proteins with similarity to two-component phosphorelay signaling elements, including hybrid receptor histidine kinases, two classes of response regulator proteins (type-A and type-B ARRs) and a family of six histidine-containing phosphotransfer proteins (AHPs), five of which contain a conserved His residue that is required for phosphorelay signaling. The current model for cytokinin signaling includes a multistep phosphorelay: three histidine kinases and at least five type-B ARRs have been shown to act as positive regulators of cytokinin signaling, while a number of type-A ARRs, and AHP6, act as negative regulators of the pathway. In our recent Plant Cell paper, we provided genetic evidence that at least four AHPs can act as positive regulators of cytokinin signaling, affecting responses to cytokinin in the root and the shoot. In this addendum, we discuss the role of AHPs in cytokinin signaling and speculate on their potential interactions with other signaling pathways in Arabidopsis.
ISSN:1559-2316
1559-2324
1559-2324
DOI:10.4161/psb.2.4.4039