DSCAM-AS1 accelerates cell proliferation and migration in osteosarcoma through miR-186-5p/GPRC5A signaling

Osteosarcoma (OS) is one of the most primary bone malignancies, often occurring in adolescents or children. Numerous scientific findings have introduced that long noncoding RNAs (lncRNAs) can be involved in tumor occurrence and development. Although DSCAM-AS1 has been studied in several cancers, its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer biomarkers : section A of Disease markers 2021-01, Vol.30 (1), p.29-39
Hauptverfasser: Ning, Yuwen, Bai, Zhengfa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Osteosarcoma (OS) is one of the most primary bone malignancies, often occurring in adolescents or children. Numerous scientific findings have introduced that long noncoding RNAs (lncRNAs) can be involved in tumor occurrence and development. Although DSCAM-AS1 has been studied in several cancers, its role and mechanism in OS are poorly understood. In this work, high level of DSCAM-AS1 was validated in OS cell lines. Depleting DSCAM-AS1 inhibited cell proliferation, migration and EMT process in OS. Subsequently, we disclosed that DSCAM-AS1 was mainly observed in the cytoplasm of OS cells and could bind with miR-186-5p in OS. Moreover, inhibiting miR-186-5p rescued the impact of silenced DSCAM-AS1 on OS progression. Additionally, GPRC5A was verified as the target downstream of miR-186-5p, and it was negatively modulated by miR-186-5p but positively regulated by DSCAM-AS1. More importantly, DSCAM-AS1 enhanced GPRC5A level in OS by sequestering miR-186-5p. Finally, up-regulating GPRC5A reversed the influences of DSCAM-AS1 repression on the oncogenic behaviors of OS cells. Knockdown of DSCAM-AS1 suppressed NPC tumor growth in vivo. All findings uncovered that DSCAM-AS1 aggravated OS progression through sponging miR-186-5p to up-regulate GPRC5A expression. Thus, we proposed DSCAM-AS1 as a probable target for OS treatment.
ISSN:1574-0153
1875-8592
DOI:10.3233/CBM-190703