Oscillating dynamo magnetic field in the presence of an external nondynamo field - The influence of a solar primordial field
Dynamo magnetic fields are self-excited and, once started, can perpetrate themselves with no outside source of magnetic flux, as long as the necessary fluid motions persist. Such dynamo fields behave completely independently of the field's overall polarity. In the presence of an external field...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 1984-02, Vol.277 (2), p.848-861 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dynamo magnetic fields are self-excited and, once started, can perpetrate themselves with no outside source of magnetic flux, as long as the necessary fluid motions persist. Such dynamo fields behave completely independently of the field's overall polarity. In the presence of an external field of separate origin this polarity symmetry of the dynamo states is broken; the dynamo states become asymmetric with respect to polarity. In this paper a calculation is performed of the characteristics of a spherical shell dynamo in the presence of a fossil magnetic field penetrating into the dynamo from below. The asymmetric periodic states are found as a function of the strength of underlying fossil field. Applying these results to the sun, there appears to be no evidence of any intense large-scale primordial magnetic flux, having either dipole-like or quadrupole-like symmetry about the sun's equator, penetrating into the convection zone from the sun's radiative core. Indeed, the calculations indicate, even on the basis of the presently crude observations, that any such primordial field must have an intensity smaller than a few gauss. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.1086/161755 |