A potential pathway for flippase-facilitated glucosylceramide catabolism in plants
The Aminophospholipid ATPase (ALA) family of plant lipid flippases is involved in the selective transport of lipids across membrane bilayers. Recently, we demonstrated that double mutants lacking both ALA4 and −5 are severely dwarfed. Dwarfism in ala4/5 mutants was accompanied by cellular elongation...
Gespeichert in:
Veröffentlicht in: | Plant signaling & behavior 2020-10, Vol.15 (10), p.1783486-1783486 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Aminophospholipid ATPase (ALA) family of plant lipid flippases is involved in the selective transport of lipids across membrane bilayers. Recently, we demonstrated that double mutants lacking both ALA4 and −5 are severely dwarfed. Dwarfism in ala4/5 mutants was accompanied by cellular elongation defects and various lipidomic perturbations, including a 1.4-fold increase in the accumulation of glucosylceramides (GlcCers) relative to total sphingolipid content. Here, we present a potential model for flippase-facilitated GlcCer catabolism in plants, where a combination of ALA flippases transport GlcCers to cytosolic membrane surfaces where they are degraded by Glucosylceramidases (GCDs). GCDs remove the glucose headgroup from GlcCers to produce a ceramide (Cer) backbone, which can be further degraded to
sph
ingoid bases (
Sph
s, e.g, phytosphingosine) and fatty acids (FAs). In the absence of GlcCer-transporting flippases, GlcCers are proposed to accumulate on extracytoplasmic (i.e., apoplastic) or lumenal membrane surfaces. As GlcCers are potential precursors for Sph production, impaired GlcCer catabolism might also result in the decreased production of the secondary messenger Sph-1-phosphate (Sph-1-P, e.g., phytosphingosine-1-P), a regulator of cell turgor. Importantly, we postulate that either GlcCer accumulation or reduced Sph-1-P signaling might contribute to the growth reductions observed in ala4/5 mutants. Similar catabolic pathways have been proposed for humans and yeast, suggesting flippase-facilitated GlcCer catabolism is conserved across eukaryotes. |
---|---|
ISSN: | 1559-2316 1559-2324 1559-2324 |
DOI: | 10.1080/15592324.2020.1783486 |