Bedform characteristics and biofilm community development interact to modify hyporheic exchange

The physical and biological attributes of riverine ecosystems interact in a complex manner which can affect the hydrodynamic behaviour of the system. This can alter the mixing characteristics of a river at the sediment-water interface. Research on hyporheic exchange has increased in recent years dri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2020-12, Vol.749, p.141397-141397, Article 141397
Hauptverfasser: Cook, Sarah, Price, Oliver, King, Andrew, Finnegan, Chris, van Egmond, Roger, Schäfer, Hendrik, Pearson, Jonathan M., Abolfathi, Soroush, Bending, Gary D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The physical and biological attributes of riverine ecosystems interact in a complex manner which can affect the hydrodynamic behaviour of the system. This can alter the mixing characteristics of a river at the sediment-water interface. Research on hyporheic exchange has increased in recent years driven by a greater appreciation for the importance of this dynamic ecotone in connecting and regulating river systems. An understanding of process-based interactions driving hyporheic exchange is still limited, specifically the feedbacks between the physical and biological controlling factors. The interplay between bed morphology and sediment size on biofilm community development and the impact on hyporheic exchange mechanisms, was experimentally considered. Purpose built recirculating flume systems were constructed and three profiles of bedform investigated: i) flat, ii) undulating λ = 1 m, ii) undulating λ = 0.2 m, across two different sized sediments (0.5 mm and 5 mm). The influence of biofilm growth and bedform interaction on hyporheic exchange was explored, over time, using discrete repeat injections of fluorescent dye into the flumes. Hyporheic exchange rates were greatest in systems with larger sediment sizes (5 mm) and with more bedforms (undulating λ = 0.2). Sediment size was a dominant control in governing biofilm growth and hyporheic exchange in systems with limited bedform. In systems where bedform was prevalent, sediment size and biofilm appeared to no longer be a control on exchange due to the physical influence of advective pumping. Here, exchange rates within these environments were more consistent overtime, despite greater microbial growth. As such, bedform has the potential to overcome the rate limiting effects of biotic factors on hyporheic exchange and sediment size on microbial penetration. This has implications for pollutant and nutrient penetration; bedforms increase hydrological connectivity, generating the opportunity to support microbial communities at depth and as such, improve the self-purification ability of river systems. [Display omitted] •Interdisciplinary investigation of mechanisms controlling hyporheic exchange.•Sediment size modifies hyporheic exchange in systems with limited bedform.•Bedform structures can overcome the biological control over hyporheic exchange.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2020.141397