Regulation of glutathione-dependent antioxidant defense system of grass carp Ctenopharyngodon idella under the combined stress of mercury and temperature

In this study, we investigated the combined effects of temperatures fluencies and mercury (Hg) on glutathione-dependent antioxidant system in fish, by measuring the oxidative stress indicator (LPO, lipid peroxidation) and the parameters involved in the glutathione-related antioxidant defense system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2021, Vol.28 (2), p.1689-1696
Hauptverfasser: Li, Zhi-Hua, Li, Ping, Wu, Yanhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we investigated the combined effects of temperatures fluencies and mercury (Hg) on glutathione-dependent antioxidant system in fish, by measuring the oxidative stress indicator (LPO, lipid peroxidation) and the parameters involved in the glutathione-related antioxidant defense system (GPx, glutathione peroxidase; GR, glutathione reductase; GST, glutathione S-transferase; GSH, reduced glutathione), as well as the expression of related genes in grass carp, Ctenopharyngodon idella . Fish (45.37 ± 3.58 g) were exposed to 10 test groups, e.g., 15 °C with/without Hg, 20 °C with/without Hg, 25 °C with/without Hg, 30 °C with/without Hg, 35 °C with/without Hg for 4 weeks. Three-way ANOVA was used to analyze the correlation between the measured parameters and experimental conditions (water temperature, Hg exposure, exposure time, and their interactions.). Our results show that there is no interaction between mercury and low temperature, but the combined effect at high temperature has been confirmed, which indicated the glutathione-dependent enzyme system in grass carp has a complex regulatory mechanism with temperature fluctuations. In the actual field monitoring, it is necessary to consider the impact of extreme temperature on the toxicity of pollutants in the aquatic ecosystem.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-020-10587-5