Fundamental Understanding of the Formation Mechanism for Graphene Quantum Dots Fabricated by Pulsed Laser Fragmentation in Liquid: Experimental and Theoretical Insight

The pulsed laser fragmentation in liquid (PLFL) process is a promising technique for the synthesis of carbon‐based functional materials. In particular, there has been considerable attention on graphene quantum dots (GQDs) derived from multiwalled carbon nanotubes (MWCNTs) by the PLFL process, owing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-09, Vol.16 (38), p.e2003538-n/a
Hauptverfasser: Kang, Sukhyun, Jung, Kyung Hwan, Mhin, Sungwook, Son, Yong, Lee, Kangpyo, Kim, Won Rae, Choi, Heechae, Ryu, Jeong Ho, Han, Hyuksu, Kim, Kang Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pulsed laser fragmentation in liquid (PLFL) process is a promising technique for the synthesis of carbon‐based functional materials. In particular, there has been considerable attention on graphene quantum dots (GQDs) derived from multiwalled carbon nanotubes (MWCNTs) by the PLFL process, owing to the low cost and rapid processing time involved. However, a fundamental deep understanding of the formation of GQDs from MWCNTs by PLFL has still not been achieved despite the high demand. In this work, a mechanism for the formation of GQDs from MWCNTs by the PLFL process is reported, through the combination of experimental and theoretical studies. Both the experimental and computational results demonstrate that the formation of GQDs strongly depends on the pulse laser energy. Both methods demonstrate that the critical energy point, where a plasma plume is generated on the surface of the MWCNTs, should be precisely maintained to produce GQDs; otherwise, an amorphous carbon structure is favorably formed from the scattered carbons. The pulsed laser fragmentation in liquid (PLFL) process is a promising technique for the synthesis of carbon‐based functional materials. A mechanism for the formation of graphene quantum dots from carbon precursor by the PLFL process is reported, through the combination of experimental and theoretical studies.
ISSN:1613-6810
1613-6829
DOI:10.1002/smll.202003538