Influence of the AOT Counterion Chemical Structure on the Generation of Organized Systems

The impact of the imidazolium counterion structure on the organized systems formed by the surfactant 1,4-bis-2-ethylhexylsulfosuccinate, AOT, both in aqueous solutions and in nonpolar solvents is investigated. With this in mind, we investigated if the ionic liquid-like (IL-like) surfactant 1-ethyl-3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2020-09, Vol.36 (36), p.10785-10793
Hauptverfasser: Lépori, Cristian M. O, Correa, N. Mariano, Silber, Juana J, Falcone, R. Darío, López-López, Manuel, Moyá, M. Luisa
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The impact of the imidazolium counterion structure on the organized systems formed by the surfactant 1,4-bis-2-ethylhexylsulfosuccinate, AOT, both in aqueous solutions and in nonpolar solvents is investigated. With this in mind, we investigated if the ionic liquid-like (IL-like) surfactant 1-ethyl-3-methylimidazolium 1,4-bis-2-ethylhexylsulfosuccinate, emim-AOT, forms direct micelles or vesicles in water. Dynamic light scattering, zeta potential, conductivity, fluorescence spectroscopy, and UV–visible spectroscopy measurements were performed to characterize the organized systems in aqueous solutions. We also studied the self-aggregation of emim-AOT, 1-butyl-3-methylimidazolium 1,4-bis-2-ethylhexylsulfosuccinate, bmim-AOT, and of 1-hexyl-3-methylimidazolium 1,4-bis-2-ethylhexylsulfosuccinate, hmim-AOT, in nonpolar solvents. The results obtained showed that the IL-like surfactant emim-AOT forms direct micelles in water, as sodium 1,4-bis-2-ethylhexylsulfosuccinate (Na-AOT) does. However, emim-AOT aggregates are larger, have a lower surface charge, are more stable, and have a more polar and less fluid micellar interface than Na-AOT micelles. It was also observed that emim-AOT and hmim-AOT form reverse micelles in nonpolar solvents. The size of the imidazolium cations dramatically influences the size of the reverse micelles and their ability to solubilize water.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.0c01575