Effect of cracks on the local deformations of articular cartilage

Despite significant evidence regarding the increased risk of cartilage degeneration due to traumatic injuries to joints, there is still a lack of understanding of the mechanisms underlying osteoarthritis development following a joint injury. Injuries in knee cartilage are often characterized by lesi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2020-09, Vol.110, p.109970-109970, Article 109970
Hauptverfasser: Komeili, Amin, Luqman, Saad, Federico, Salvatore, Herzog, Walter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite significant evidence regarding the increased risk of cartilage degeneration due to traumatic injuries to joints, there is still a lack of understanding of the mechanisms underlying osteoarthritis development following a joint injury. Injuries in knee cartilage are often characterized by lesions or tears. In addition to acute traumatic joint injuries, microscale damages, which may form because of wear, are thought to be a contributing factor in the development of osteoarthritis. While the overall function of a joint may not be affected by the presence of microcracks, we hypothesized that strain magnification in the vicinity of microcracks might be significant. We tested this hypothesis by creating partial cuts in articular cartilages and measuring the strain within 20 µm from the edge of these cuts. Measurements were made in the superficial and middle zones of articular cartilage extract samples. We found that local strain in the vicinity of cuts is magnified by a factor of 1.2–1.6 compared to strains in intact regions for nominal compressions exceeding 5%. For nominal compressions of less than 5%, no strain magnification was detected in the vicinity of the cracks. We concluded that articular cartilage cracks magnify local strains by damaging the structural integrity and decreasing the fluid pressure in the matrix.
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2020.109970