Molecular determinant for specificity: Differential interaction of α-amylases with their proteinaceous inhibitors
α-Amylase inhibitors (α-AIs) belong to the discrete classes, and exhibited differential specificities against α-amylases from various sources. Several α-amylases and their complexes with inhibitors at the molecular level have been studied in detail. Interestingly, some α-AIs depict specific and sele...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta. General subjects 2020-12, Vol.1864 (12), p.129703-129703, Article 129703 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | α-Amylase inhibitors (α-AIs) belong to the discrete classes, and exhibited differential specificities against α-amylases from various sources. Several α-amylases and their complexes with inhibitors at the molecular level have been studied in detail. Interestingly, some α-AIs depict specific and selective interactions amid different insect α-amylases.
There are studies to understand evolutionary variability and functional differentiation of insect α-amylases and their cognate inhibitors. We have examined sequence, structural, and interaction diversity between various α-amylases and α-AIs. Based on these analyses, we are providing a potential basis for the functional differentiation among certain insect α-amylases concerning mammalian counterparts and their interactions with different proteinaceous α-AIs.
Insect α-amylases have conserved domain architecture with differences in length, number of disulfide bonds, and secondary structure. Furthermore, few of them exhibit variable characteristics like chloride dependent activity, the presence of N-terminal glutamine residue to protect against proteolytic degradation, and loop variations near the enzyme active site. Conformation of α-AI protein could be an essential factor for their specificity and binding affinities towards target α-amylase(s). Furthermore, variation into the enzyme binding pocket residues might contribute to differential interactions with inhibitors.
Molecular insights in the interactions between insect α-amylases and plant α-AI will provide the details of mechanisms assisting the inhibitor specificity. Furthermore, this information will help to design potent and effective α-AIs against specific α-amylase.
[Display omitted]
•Food source is the key factor for expression dynamics of the insect amylases.•Binding pocket variability contributes to the amylases substrate specificities.•Loop variability determines the inhibitor specificity of α-amylases.•Specificity and binding affinities could be affected by conformation of α-AI. |
---|---|
ISSN: | 0304-4165 1872-8006 |
DOI: | 10.1016/j.bbagen.2020.129703 |