Production of Highly Polarized Positron Beams via Helicity Transfer from Polarized Electrons in a Strong Laser Field
The production of a highly polarized positron beam via nonlinear Breit-Wheeler processes during the interaction of an ultraintense circularly polarized laser pulse with a longitudinally spin-polarized ultrarelativistic electron beam is investigated theoretically. A new Monte Carlo method employing f...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2020-07, Vol.125 (4), p.1-044802, Article 044802 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The production of a highly polarized positron beam via nonlinear Breit-Wheeler processes during the interaction of an ultraintense circularly polarized laser pulse with a longitudinally spin-polarized ultrarelativistic electron beam is investigated theoretically. A new Monte Carlo method employing fully spin-resolved quantum probabilities is developed under the local constant field approximation to include three-dimensional polarization effects in strong laser fields. The produced positrons are longitudinally polarized through polarization transferred from the polarized electrons by the medium of high-energy photons. The polarization transfer efficiency can approach 100% for the energetic positrons moving at smaller deflection angles. This method simplifies the postselection procedure to generate high-quality positron beams in further applications. In a feasible scenario, a highly polarized (40%–65%), intense ( 105 – 106 /bunch), collimated (5–70 mrad) positron beam can be obtained in a femtosecond timescale. The longitudinally polarized positron sources are desirable for applications in high-energy physics and material science. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.125.044802 |