Production of Highly Polarized Positron Beams via Helicity Transfer from Polarized Electrons in a Strong Laser Field

The production of a highly polarized positron beam via nonlinear Breit-Wheeler processes during the interaction of an ultraintense circularly polarized laser pulse with a longitudinally spin-polarized ultrarelativistic electron beam is investigated theoretically. A new Monte Carlo method employing f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2020-07, Vol.125 (4), p.1-044802, Article 044802
Hauptverfasser: Li, Yan-Fei, Chen, Yue-Yue, Wang, Wei-Min, Hu, Hua-Si
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The production of a highly polarized positron beam via nonlinear Breit-Wheeler processes during the interaction of an ultraintense circularly polarized laser pulse with a longitudinally spin-polarized ultrarelativistic electron beam is investigated theoretically. A new Monte Carlo method employing fully spin-resolved quantum probabilities is developed under the local constant field approximation to include three-dimensional polarization effects in strong laser fields. The produced positrons are longitudinally polarized through polarization transferred from the polarized electrons by the medium of high-energy photons. The polarization transfer efficiency can approach 100% for the energetic positrons moving at smaller deflection angles. This method simplifies the postselection procedure to generate high-quality positron beams in further applications. In a feasible scenario, a highly polarized (40%–65%), intense ( 105 – 106 /bunch), collimated (5–70 mrad) positron beam can be obtained in a femtosecond timescale. The longitudinally polarized positron sources are desirable for applications in high-energy physics and material science.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.125.044802