Large Deviation Principle Linking Lineage Statistics to Fitness in Microbial Populations

In exponentially proliferating populations of microbes, the population doubles at a rate less than the average doubling time of a single-cell due to variability at the single-cell level. It is known that the distribution of generation times obtained from a single lineage is, in general, insufficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2020-07, Vol.125 (4), p.048102-048102, Article 048102
Hauptverfasser: Levien, Ethan, GrandPre, Trevor, Amir, Ariel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In exponentially proliferating populations of microbes, the population doubles at a rate less than the average doubling time of a single-cell due to variability at the single-cell level. It is known that the distribution of generation times obtained from a single lineage is, in general, insufficient to determine a population's growth rate. Is there an explicit relationship between observables obtained from a single lineage and the population growth rate? We show that a population's growth rate can be represented in terms of averages over isolated lineages. This lineage representation is related to a large deviation principle that is a generic feature of exponentially proliferating populations. Due to the large deviation structure of growing populations, the number of lineages needed to obtain an accurate estimate of the growth rate depends exponentially on the duration of the lineages, leading to a nonmonotonic convergence of the estimate, which we verify in both synthetic and experimental data sets.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.125.048102