Influence of anaerobic digestion on the labile phosphorus in pig, chicken, and dairy manure

Phosphorus (P) loss from livestock and poultry industry causes serious threat to agro-ecological environments. Anaerobic digestion (AD), through recycling of P-containing resources and biogas production, prevails as a promising solution to the resource, energy, and environment trilemma. In this stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2020-10, Vol.737, p.140234-140234, Article 140234
Hauptverfasser: Li, Bowen, Dinkler, Konstantin, Zhao, Nan, Sobhi, Mostafa, Merkle, Wolfgang, Liu, Shan, Dong, Renjie, Oechsner, Hans, Guo, Jianbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phosphorus (P) loss from livestock and poultry industry causes serious threat to agro-ecological environments. Anaerobic digestion (AD), through recycling of P-containing resources and biogas production, prevails as a promising solution to the resource, energy, and environment trilemma. In this study, the dynamic transformation of P in batch AD processes fed with chicken, pig and dairy manures was investigated. Results showed that the Labile-P of total phosphorus (TP) in pig, chicken and dairy manure digestates decreased from 37.35% to 23.79%, 36.79% to 17.29%, and 60.47% to 20.39%, respectively, and was associated with an increase of NaOH-P during the AD process. However, the Labile-P in raw manures ranging from 64.67% to 81.10%, indicated that AD could reduce the pollution risk caused by the overuse of high Labile-P animal manure as fertilizer. Metal ions had a significant influence on P transformation because of their ability to combine with PO43−/HPO42−. During AD, the species of phosphates increased: AlPO4, FePO4, Mg3(PO4)2, CaHPO4, Mg(NH4)PO4·6H2O and Ca10(PO4)6(OH)2 were the main phosphates qualified by X-ray diffraction (XRD). AD produced a satisfactory fertilizer for plants that were able to activate the precipitated P, which could provide readily available N and slow-release P. This study provides a meaningful theoretical guide for recycling P from animal manure resources. [Display omitted] •The dynamic transformation of P in batch AD processes was investigated.•Labile-P content decreased by 13.6%–40.1% in AD process.•NaOH-P increased more significantly in chicken manure digestate than others.•Digestate application could reduce the risk of P loss in form of Labile-P.•Metal ions combining with P, influencing its transformation.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2020.140234