Atomic Hourglass and Thermometer Based on Diffusion of a Mobile Dopant in VO2

Transformations between different atomic configurations of a material oftentimes bring about dramatic changes in functional properties as a result of the simultaneous alteration of both atomistic and electronic structure. Transformation barriers between polytypes can be tuned through compositional m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2020-09, Vol.142 (36), p.15513-15526
Hauptverfasser: Sellers, Diane G, Braham, Erick J, Villarreal, Ruben, Zhang, Baiyu, Parija, Abhishek, Brown, Timothy D, Alivio, Theodore E. G, Clarke, Heidi, De Jesus, Luis R, Zuin, Lucia, Prendergast, David, Qian, Xiaofeng, Arroyave, Raymundo, Shamberger, Patrick J, Banerjee, Sarbajit
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transformations between different atomic configurations of a material oftentimes bring about dramatic changes in functional properties as a result of the simultaneous alteration of both atomistic and electronic structure. Transformation barriers between polytypes can be tuned through compositional modification, generally in an immutable manner. Continuous, stimulus-driven modulation of phase stabilities remains a significant challenge. Utilizing the metal–insulator transition of VO2, we exemplify that mobile dopants weakly coupled to the crystal lattice provide a means of imbuing a reversible and dynamical modulation of the phase transformation. Remarkably, we observe a time- and temperature-dependent evolution of the relative phase stabilities of the M1 and R phases of VO2 in an “hourglass” fashion through the relaxation of interstitial boron species, corresponding to a 50 °C modulation of the transition temperature achieved within the same compound. The material functions as both a chronometer and a thermometer and is “reset” by the phase transition. Materials possessing memory of thermal history hold promise for applications such as neuromorphic computing, atomic clocks, thermometry, and sensing.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.0c07152