Carrier Transport Limited by Trap State in Cs2AgBiBr6 Double Perovskites

Understanding the photoinduced carrier dynamics in Cs2AgBiBr6 double perovskites is essential for their application in optoelectronic devices. Herein, we report an investigation on the temperature-dependent carrier dynamics in a Cs2AgBiBr6 single crystal (SC). The time-resolved photoluminescence (TR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2020-09, Vol.11 (17), p.6956-6963
Hauptverfasser: Yin, Yanfeng, Tian, Wenming, Leng, Jing, Bian, Jiming, Jin, Shengye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the photoinduced carrier dynamics in Cs2AgBiBr6 double perovskites is essential for their application in optoelectronic devices. Herein, we report an investigation on the temperature-dependent carrier dynamics in a Cs2AgBiBr6 single crystal (SC). The time-resolved photoluminescence (TRPL) measurement indicates that the majority of carriers (>99%) decay through a fast trapping process at room temperature, and as the temperature decreases to 123 K, the population of carriers with a slow fundamental decay kinetics rises to ∼50%. We show that the carrier diffusion coefficient (theoretical diffusion length) varies from 0.020 ± 0.003 cm2 s–1 (0.70 μm) at 298 K to 0.11 ± 0.010 cm2 s–1 (2.44 μm) at 123 K. However, in spite of the long diffusion length, the population of carriers that can perform long-distance transport is restricted by the trap state, which is likely a key reason limiting the performance of Cs2AgBiBr6 optoelectronic devices.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.0c01817