Cytotoxicity of α‑Helical, Staphylococcus aureus PSMα3 Investigated by Post-Ion-Mobility Dissociation Mass Spectrometry

Our knowledge of amyloid formation and cytotoxicity originating from self-assembly of α-helical peptides is incomplete. PSMα3 is the only system where high-resolution X-ray crystallography and toxicity data are available. Oligomers of multiple α-helical monomers are less stable than those of β-stran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2020-09, Vol.92 (17), p.11802-11808
Hauptverfasser: Gray, Amber L. H, Antevska, Aleksandra, Oluwatoba, Damilola S, Schonfeld, Grace E, Lazar Cantrell, Kristi L, Do, Thanh D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our knowledge of amyloid formation and cytotoxicity originating from self-assembly of α-helical peptides is incomplete. PSMα3 is the only system where high-resolution X-ray crystallography and toxicity data are available. Oligomers of multiple α-helical monomers are less stable than those of β-strands, partially due to the lack of a consistent hydrogen-bonding network. It is challenging to preserve such oligomers in the gas phase where mass-selected structural studies using ion-mobility spectrometry mass spectrometry (IMS-MS) could be performed. As the oligomers fall apart after exiting the drift cell of the mass spectrometer, novel features that have shorter (a loss of charged species) or longer (a loss of neutral species) arrival times than expected are present together with those from the intact species. By obtaining a complete data set of PSMα3 peptides in solution and with n-dodecyl-β-d-maltoside, a micelle-forming detergent, we are able to discern the dissociated from the intact oligomers and detergent-bound complexes and correlate the reported cytotoxicity to the peptide oligomeric structures and their interactions with membrane mimetics. The study sheds new insights into the interpretation of IMS-MS data from biomolecular self-assembly studiesan important and timely topic.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.0c01974