Quaternary Ammonium Salt-Functionalized Tetraphenylethene Derivative Boosts Electrochemiluminescence for Highly Sensitive Aqueous-Phase Biosensing
Aggregation induced emission active compounds (AIEgens) have appeared as a new kind of electrochemiluminescence (ECL) emitters due to their bright emission in the aggregated state but lack functional groups. Herein, we report a quaternary ammonium salt groups-functionalized AIEgen (QAU-1) and discov...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2020-09, Vol.92 (17), p.11747-11754 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aggregation induced emission active compounds (AIEgens) have appeared as a new kind of electrochemiluminescence (ECL) emitters due to their bright emission in the aggregated state but lack functional groups. Herein, we report a quaternary ammonium salt groups-functionalized AIEgen (QAU-1) and discover that coating QAU-1 on the indium tin oxide (ITO) surface (QAU/ITO) enabled QAU-1 to display significant cathodic ECL emission compared with that of QAU-1 in the dissolved state. Inspired by this, we applied QAU-1 as emitters to develop a novel ECL biosensor (Fc-DNA/QAU/ITO) through electrostatic attraction between QAU/ITO and a ferrocene-labeled ssDNA (Fc-DNA), and the developed biosensor was employed to detect bleomycin (BLM) with high sensitivity based on the target-initiated specific cleavage and subsequent removal of Fc molecules from the electrode. We envision this work will open up a new avenue to development of high-performance ECL biosensors, which will display a significant potential application in the field of analysis. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.0c01796 |