JLX001 attenuates blood-brain barrier dysfunction in MCAO/R rats via activating the Wnt/β-catenin signaling pathway

JLX001, a new dihydrochloride of Cyclovirobuxine D (CVB-D), has bioactivities against ischemia injury. The blood-brain barrier (BBB) disruption is involved in the pathogeneses of ischemic stroke. This study was designed to explore the effect and potential mechanism of JLX001 on the BBB after ischemi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2020-11, Vol.260, p.118221-13, Article 118221
Hauptverfasser: Zhao, Bo, Zhu, Jianping, Fei, Yuxiang, Yin, Qiyang, Shen, Weiyang, Liang, Bingwen, Zhu, Xiong, Li, Yunman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:JLX001, a new dihydrochloride of Cyclovirobuxine D (CVB-D), has bioactivities against ischemia injury. The blood-brain barrier (BBB) disruption is involved in the pathogeneses of ischemic stroke. This study was designed to explore the effect and potential mechanism of JLX001 on the BBB after ischemic stroke. Rats were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) to mimic cerebral ischemia in vivo. In vitro, rat primary brain microvascular endothelial cells (PBMECs) were cultured and exposed to oxygen-glucose deprivation/reoxygenation (OGD/R). Posttreatment of JLX001 for 15 days after MCAO/R improved the behavior, learning and memory ability. Pretreatment of JLX001 for 3 days significantly attenuated infarct volume, lessened brain edema, mitigated BBB disruption and decreased the neurological deficit score in MCAO/R rats. Moreover, JLX001 increased cell viability and reduced sodium fluorescein leakage after OGD/R injury. In addition, JLX001 increased the expressions of Claudin-5 and Occludin, decreased the expression of MMP-9 both in vivo and in vitro. Moreover, immunofluorescence staining and western immunoblotting results showed that JLX001 increased the expressions of tight junction proteins via activating Wnt/β-catenin signal pathway in vivo and in vitro, which may be associated with the activation of PI3K/Akt signaling. Besides, XAV939 (an inhibitor of the Wnt/β-catenin pathway) proved the connection of JLX001 and Wnt/β-catenin pathway. These results suggest that JLX001 alleviates BBB disruption after MCAO/R and OGD/R possibly by alleviating MMP-9 and activating the Wnt/β-catenin signaling pathway.
ISSN:0024-3205
1879-0631
DOI:10.1016/j.lfs.2020.118221