Circular RNA hsa_circ_0096157 contributes to cisplatin resistance by proliferation, cell cycle progression, and suppressing apoptosis of non-small-cell lung carcinoma cells
Circular RNAs (circRNAs) play a major role in cancer development and chemotherapy resistance. This study aimed to characterize circRNA profiles associated with Cisplatin (diamminedichloroplatinum, DDP) resistance of non-small-cell lung carcinoma (NSCLC) cells. The half-maximal inhibitory concentrati...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular biochemistry 2020-12, Vol.475 (1-2), p.63-77 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Circular RNAs (circRNAs) play a major role in cancer development and chemotherapy resistance. This study aimed to characterize circRNA profiles associated with Cisplatin (diamminedichloroplatinum, DDP) resistance of non-small-cell lung carcinoma (NSCLC) cells. The half-maximal inhibitory concentration (IC50) of A549 and A549/DDP cells was determined using CCK-8 assay. Further, circRNA profiles and differentially expressed genes in A549 and A549/DDP cells were characterized by deep sequencing and cell proliferation was measured using MTS assay. Cell cycle progression was analyzed using flow cytometry. Apoptosis experiment was performed by TUNEL assay and flow cytometry. Cell migration and invasion were assessed using the Transwell system. Finally, signalling protein levels related to cell cycle progression and migration were measured by western blot. CCK-8 assay showed that A549/DDP cells obtained strong DDP resistance. Further deep sequencing results showed that 689 circRNAs and 87 circRNAs were significantly upregulated and downregulated in A549/DDP cells compared to A549 cells, respectively. Moreover, the circRNA hsa_circ_0096157 with the highest expression level in A549/DPP cells was further analyzed for its potential mechanism of DDP resistance in A549/DDP. With or without DDP treatment, hsa_circ_0096157 knockdown inhibited proliferation, migration, invasion and cell cycle progression but promoted apoptosis of A549/DDP cells. In addition, the western blot results also showed that hsa_circ_0096157 knockdown in A549/DDP cells increased P21 and E-cadherin but decreased CDK4, Cyclin D1, Bcl-2, N-cadherin, and Vimentin protein expression levels, indicating that cell cycle progression might be inhibited by increased P21 protein level to inhibit the expression of CDK4-cyclin D1 complex and decreased Bcl-2 protein level; and migration and invasion were suppressed by the increased E-cadherin and decreased N-cadherin and Vimentin expression levels. In contrast, hsa_circ_0096157 overexpression in A549 cells caused the opposite cellular and molecular alterations. DDP resistance in NSCLC cells was associated with significant circRNA profile alterations. Moreover, increased hsa_circ_0096157 expression contributed to DDP resistance in NSCLC cells by promoting cell proliferation, migration, invasion and cell cycle progression and inhibiting apoptosis. |
---|---|
ISSN: | 0300-8177 1573-4919 |
DOI: | 10.1007/s11010-020-03860-1 |