Life-Long Neural Stem Cells Are Fate-Specified at an Early Developmental Stage
Abstract The origin and life-long fate of quiescent neural stem cells (NSCs) in the adult mammalian brain remain largely unknown. A few neural precursor cells in the embryonic brain elongate their cell cycle time and subsequently become quiescent postnatally, suggesting the possibility that life-lon...
Gespeichert in:
Veröffentlicht in: | Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2020-11, Vol.30 (12), p.6415-6425 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
The origin and life-long fate of quiescent neural stem cells (NSCs) in the adult mammalian brain remain largely unknown. A few neural precursor cells in the embryonic brain elongate their cell cycle time and subsequently become quiescent postnatally, suggesting the possibility that life-long NSCs are selected at an early embryonic stage. Here, we utilized a GFP-expressing lentivirus to investigate the fate of progeny from individual lentivirus-infected NSCs by identifying the lentiviral integration site. Our data suggest that NSCs become specified to two or more lineages prior to embryonic day 13.5 in mice: one NSC lineage produces cells only for the cortex and another provides neurons to the olfactory bulb. The majority of neurosphere-forming NSCs in the adult brain are relatively dormant and generate very few cells, if any, in the olfactory bulb or cortex, and this NSC population could serve as a reservoir that is occasionally reactivated later in life. |
---|---|
ISSN: | 1047-3211 1460-2199 |
DOI: | 10.1093/cercor/bhaa200 |