A novel and cost-effective method for fabrication of a durable superhydrophobic aluminum surface with self-cleaning properties
A hierarchical superhydrophobic surface is prepared via a two-step boiling water immersion process and anodization of the treated aluminum substrate in a novel hydrophobic electrolyte of aluminum nitrate and stearic acid mixture at room temperature. The immersion time in boiling water had a signific...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2020-11, Vol.31 (46), p.465708-465708 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A hierarchical superhydrophobic surface is prepared via a two-step boiling water immersion process and anodization of the treated aluminum substrate in a novel hydrophobic electrolyte of aluminum nitrate and stearic acid mixture at room temperature. The immersion time in boiling water had a significant influence on the morphology and durability of the sample. A pseudoboehmite coating is created on the aluminum surface during the boiling process, as revealed by the field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FTIR) spectrophotometer results. The energy-dispersive x-ray spectroscopy analysis confirmed the formation of hydrophobic coating surface after anodization. Also, the FE-SEM images and the atomic force microscopy (AFM) investigation proved the hierarchical nano-and microstructure stem from boiling and anodizing procedures, respectively. The successively boiled and anodized surface exhibited contact angle of about 155 , sliding and hysteresis contact angles of |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/abad5c |