Increasing rates of long-term nitrogen deposition consistently increased litter decomposition in a semi-arid grassland
• The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified. • We assessed these different...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2021-01, Vol.229 (1), p.296-307 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | • The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified.
• We assessed these different mechanisms with a decomposition experiment using litter from four abundant species (Achnatherum sibiricum, Agropyron cristatum, Leymus chinensis and Stipa grandis) and litter mixtures representing treatment-specific community composition in a semi-arid grassland under long-term simulation of six different rates of N deposition.
• Decomposition increased consistently with increasing rates of N addition in all litter types. Higher soil manganese (Mn) availability, which apparently was a consequence of N addition-induced lower soil pH, was the most important factor for faster decomposition. Soil C : N ratios were lower with N addition that subsequently led to markedly higher bacterial to fungal ratios, which also stimulated litter decomposition.
• Several factors contributed jointly to higher rates of litter decomposition in response to N deposition. Shifts in plant species composition and litter quality played a minor role compared to N-driven reductions in soil pH and C : N, which increased soil Mn availability and altered microbial community structure. The soil-driven effect on decomposition reported here may have long-lasting impacts on nutrient cycling, soil organic matter dynamics and ecosystem functioning. |
---|---|
ISSN: | 0028-646X 1469-8137 |
DOI: | 10.1111/nph.16854 |