Concomitant polymorphic forms of 3‐cyclopropyl‐5‐(2‐hydrazinylpyridin‐3‐yl)‐1,2,4‐oxadiazole

The dipharmacophore compound 3‐cyclopropyl‐5‐(2‐hydrazinylpyridin‐3‐yl)‐1,2,4‐oxadiazole, C10H11N5O, was studied on the assumption of its potential biological activity. Two concomitant polymorphs were obtained on crystallization from isopropanol solution and these were thoroughly studied. Identical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section C, Crystal structure communications Crystal structure communications, 2020-08, Vol.76 (8), p.836-844
Hauptverfasser: Shishkina, Svitlana V., Konovalova, Irina S., Karpina, Veronika R., Kovalenko, Svitlana S., Kovalenko, Sergiy M., Bunyatyan, Natalya D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dipharmacophore compound 3‐cyclopropyl‐5‐(2‐hydrazinylpyridin‐3‐yl)‐1,2,4‐oxadiazole, C10H11N5O, was studied on the assumption of its potential biological activity. Two concomitant polymorphs were obtained on crystallization from isopropanol solution and these were thoroughly studied. Identical conformations of the molecules are found in both structures despite the low difference in energy between the four possible conformers. The two polymorphs differ crucially with respect to their crystal structures. A centrosymmetric dimer formed due to both stacking interactions of the `head‐to‐tail' type and N—H…N(π) hydrogen bonds is the building unit in the triclinic structure. The dimeric building units form an isotropic packing. In the orthorhombic polymorphic structure, the molecules form stacking interactions of the `head‐to‐head' type, which results in their organization in a column as the primary basic structural motif. The formation of N—H…N(lone pair) hydrogen bonds between two neighbouring columns allows the formation of a double column as the main structural motif. The correct packing motifs in the two polymorphs could not be identified without calculations of the pairwise interaction energies. The triclinic structure has a higher density and a lower (by 0.60 kcal mol−1) lattice energy according to periodic calculations compared to the orthorhombic structure. This allows us to presume that the triclinic form of 3‐cyclopropyl‐5‐(2‐hydrazinylpyridin‐3‐yl)‐1,2,4‐oxadiazole is the more stable. The dipharmacophore compound 3‐cyclopropyl‐5‐(2‐hydrazinylpyridin‐3‐yl)‐1,2,4‐oxadiazole has been synthesized and two concomitant polymorphs have been thoroughly studied. The application of classical and periodic quantum chemical calculations identified a difference in the crystal packing, which is classified as an isotropic packing of dimers in the triclinic form and as a columnar packing of molecules in the orthorhombic form.
ISSN:2053-2296
0108-2701
2053-2296
1600-5759
DOI:10.1107/S2053229620010414