Electron competition and electron selectivity in abiotic, biotic, and coupled systems for dechlorinating chlorinated aliphatic hydrocarbons in groundwater: A review

Chlorinated aliphatic hydrocarbons (CAHs) have been frequently detected in aquifers in recent years. Owing to the bioaccumulation and toxicity of CAHs, it is essential to explore high-efficiency technologies for their complete dechlorination in groundwater. At present, the most widely used abiotic a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2020-09, Vol.183, p.116060-116060, Article 116060
Hauptverfasser: Wang, Xiaohui, Xin, Jia, Yuan, Mengjiao, Zhao, Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chlorinated aliphatic hydrocarbons (CAHs) have been frequently detected in aquifers in recent years. Owing to the bioaccumulation and toxicity of CAHs, it is essential to explore high-efficiency technologies for their complete dechlorination in groundwater. At present, the most widely used abiotic and biotic remediation technologies are based on zero-valent iron (ZVI) and functional anaerobic bacteria (FAB), respectively. However, the main obstacles to the full potential of both technologies in the field include their lowered efficiencies and increased economic costs due to the co-existence of a variety of natural electron acceptors in the environment, such as dissolved oxygen (DO), nitrate (NO3−), sulfate (SO42−), ferric iron (Fe (III)), bicarbonate (HCO3−), and even water, which compete for electrons with the target contaminants. Therefore, a clear understanding of the mechanisms governing electron competition and electron selectivity is significant for the accurate evaluation of the effectiveness of both technologies under natural hydrochemical conditions. We collected data from both abiotic and biotic CAH-remediation systems, summarized the dechlorination and undesired reactions in groundwater, discussed the characterization methods and general principles of electron competition, and described strategies to improve electron selectivity in both systems. Furthermore, we reviewed the emerging ZVI-FAB coupled system, which integrates abiotic and biotic processes to enhance dechlorination performance and electron utilization efficiency. Lastly, we propose future research needs to quantitatively understand the electron competition in abiotic, biotic, and coupled systems in more detail and to promote improved electron selectivity in groundwater remediation. [Display omitted] •The electron competition in biotic, abiotic and coupled systems are summarized.•The characterization methods of electron selectivity are described.•The effects of co-existing electron acceptors are deeply discussed.•The strategies to improve electron selectivity are proposed.
ISSN:0043-1354
1879-2448
DOI:10.1016/j.watres.2020.116060