Ultra-fast all optical half-adder realized by combining AND/XOR logical gates using a nonlinear nanoring resonator
We proposed an optical half-adder design using nonlinear materials, photonic crystal structure shape of hexagonal lattice layout, and silicon dielectric rods in the air bed. The optical half-adder structure is designed and optimized by combining the AND and XOR logic gates. The compound AlGaAs is us...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2020-08, Vol.59 (22), p.6459-6465 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We proposed an optical half-adder design using nonlinear materials, photonic crystal structure shape of hexagonal lattice layout, and silicon dielectric rods in the air bed. The optical half-adder structure is designed and optimized by combining the AND and XOR logic gates. The compound AlGaAs is used as a nonlinear material in the structure. The linear part of AlGaAs material is
n
1
=
1.4
, and the nonlinear part is
n
2
=
1.5
×
10
−
17
. The main performance for all-optical logic gates is set at an operating wavelength of 1.55 µm. The time delay at all optical gates provided has a 3.1 PS response time with on/off contrast ratio for SUM and CARRY ports of 12.78 dB and 12.9 dB, respectively, and the bit rate is 0.322 Tb/s. In the best case, the 1/0 contrast ratio between input = 1 and input = 0 is 4.59 dB. The computations are performed using the finite difference two-dimensional method. |
---|---|
ISSN: | 1559-128X 2155-3165 1539-4522 |
DOI: | 10.1364/AO.392428 |