Emergent Hydrodynamics in Nonequilibrium Quantum Systems
A tremendous amount of recent attention has focused on characterizing the dynamical properties of periodically driven many-body systems. Here, we use a novel numerical tool termed "density matrix truncation" (DMT) to investigate the late-time dynamics of large-scale Floquet systems. We fin...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2020-07, Vol.125 (3), p.1-030601, Article 030601 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A tremendous amount of recent attention has focused on characterizing the dynamical properties of periodically driven many-body systems. Here, we use a novel numerical tool termed "density matrix truncation" (DMT) to investigate the late-time dynamics of large-scale Floquet systems. We find that DMT accurately captures two essential pieces of Floquet physics, namely, prethermalization and late-time heating to infinite temperature. Moreover, by implementing a spatially inhomogeneous drive, we demonstrate that an interplay between Floquet heating and diffusive transport is crucial to understanding the system's dynamics. Finally, we show that DMT also provides a powerful method for quantitatively capturing the emergence of hydrodynamics in static (undriven) Hamiltonians; in particular, by simulating the dynamics of generic, large-scale quantum spin chains (up to L = 100 ), we are able to directly extract the energy diffusion coefficient. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.125.030601 |