Design Considerations for Frequency Shifts in a Laterally Finite FBAR Sensor in Contact With the Newtonian Liquid

Mode-coupled vibrations in a thickness-shear (TSh) mode and laterally finite film bulk acoustic resonator (FBAR) with one face in contact with Newtonian (linearly viscous and compressional) liquid are investigated. With boundary conditions and interface continuity conditions, exact dispersion curves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2020-11, Vol.67 (11), p.2402-2412
Hauptverfasser: Zhao, Zinan, Wang, Bin, Qian, Zhenghua, Kuznetsova, Iren, Ma, Tingfeng, Yong, Yook-Kong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mode-coupled vibrations in a thickness-shear (TSh) mode and laterally finite film bulk acoustic resonator (FBAR) with one face in contact with Newtonian (linearly viscous and compressional) liquid are investigated. With boundary conditions and interface continuity conditions, exact dispersion curves in FBAR sensors contacting with two kinds of liquids are obtained, and they are compared with the dispersion curves in a bare sensor without liquid contact. Frequency spectra, describing mode couplings between the main TSh modal branch and undesirable modal branches, are calculated by employing weak boundary conditions at lateral free edges constructed based on the variational principle. Mode shapes of mechanical displacements in both the sensor and liquid layer are presented, and mode transformations are observed due to the liquid contact and lateral edge effect. The effect of liquid thickness on frequency spectra is also studied. Numerical results reveal that the generation of shear wave in the liquid layer results in the shifts of spectrum curves along the frequency axis and hence it is the main factor of frequency shifts of FBAR sensors. The compressional wave causes the shifts of spectrum curves along the lateral aspect ratio axis. Then for a given FBAR sensor, the liquid thickness changes could also cause frequency shifts. Therefore, desirable vibration modes should be chosen based on the frequency spectra to avoid strong mode couplings and to eliminate frequency shifts induced by the liquid thickness changes in real applications.
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2020.3006186